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Disclaimers

• This session assumes you have basic working knowledge of running FUN3D on CPUs

• In addition to the material included here, please be sure to read the GPU chapter of the user manual 
and corresponding section describing the &gpu_support namelist

• There are many more details and tips/tricks covered there
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Some Background

• FUN3D team has explored the use of GPUs for about 10 years: the software/hardware ecosystem has advanced quickly

• Breakthrough performance achieved in 2017 after adopting CUDA and the introduction of the NVIDIA Tesla V100

• Have spent the past two years hardening the implementation and beta testing with early adopters inside and outside NASA

• Like many large-scale science codes, FUN3D is memory bound, which means performance is primarily limited by the rate 

at which data can be moved from main memory to the

processing units

• The memory bandwidth offered by the V100 is 900 GB/s,

substantially higher than the ~250 GB/s available on a

typical Intel Xeon

• A single V100 will provide the performance of 180-200 Xeon

Skylake cores, depending on FUN3D input options

• For perfect gas RANS, we suggest at least 1 million grid

points (not elements) on each GPU

• If you are not seeing ~0.15 seconds per step, per 1 million

grid points on V100, things are not working correctly

• Can go less than 1 million points per GPU, but you will

not be using the GPU effectively

• Can fit ~7 million points in 32 GB of GPU memory
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Typical Hardware Setups

• GPUs still require a CPU to run the OS and other 

applications

• The GPU option in FUN3D executes all kernels 

required for time stepping on the GPU, avoiding 

expensive data motion b/w host and device

• Some FUN3D features remain on the host (e.g., 

preprocessing, visualization options); we will 

discuss how to mitigate these costs

• Most GPU-based systems now come with 4, 6, or 8 

GPUs per node

• Node-level performance is considerably faster 

than what you are used to:  A node of 4 V100s will 

perform similar to 700-800 Xeon Skylake cores

• Such nodes are more expensive, but 

performance/dollar is still a win
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Summit at Oak Ridge National Laboratory

This system has 

6 V100s per node
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Performance for Capacity Jobs

• NVIDIA Tesla V100 GPU outperforms Intel Xeon Skylake CPU by 4-5x

• New NVIDIA Tesla A100 GPU improves to 7-8x

• GPUs typically bundled in nodes with 4, 6, or 8 GPUs

• GPU nodes are more expensive, but still a win on performance / $

25x

Space Launch System

11 GPU nodes of 6xV100: 17 mins

11 CPU nodes of 440 cores: 7 hrs

OR

66 GPUs do the work of 350 CPUs (14,000 cores)

Supersonic Flows

3 GPU nodes of 6xV100: 37 mins

3 CPU nodes of 120 cores: 16 hrs

OR

18 GPUs do the work of 103 CPUs (4,120 cores)

26x

Rotorcraft

2 GPU nodes of 6xV100: 28 mins

2 CPU nodes of 80 cores: 11 hrs

OR

12 GPUs do the work of 60 CPUs (2,400 cores)

23x
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Performance for Capability Jobs

• Simulated ensembles of human-scale Mars landers investigating effects of throttle 

settings, flight Mach number, and spatial resolutions to billions of grid points

• Simulations of unprecedented spatial and temporal fidelity

• 40 TB/day migrated from ORNL to NASA Ames

• Largest public domain unstructured-grid CFD datasets available to the international 

visualization community, https://data.nas.nasa.gov/fun3d/

• Game-changing computational performance

• Xeon: One run in ~9 months on 5,000 SKL cores with 10-day waits for 5-day jobs

• Summit: Six runs done in 4.5 days on 3,312 GPUs
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System Requirements

General

• At present, FUN3D will only execute on NVIDIA Tesla GPUs; use at least the P100 (Pascal), but prefer 

V100 (Volta) or A100 (Ampere).  Do not use Kepler or earlier.

• Host may be an Intel or AMD x86 CPU, IBM POWER CPU, or a compatible ARM CPU

• Version 10.2 or higher of the NVIDIA CUDA Toolkit must be installed

MPI Concerns

• An NVIDIA NVLink interconnect may provide improved performance, but is not necessary

• Execution across multiple GPUs has been tested with the following MPI implementations:

• OpenMPI, Intel MPI, HPE/SGI MPT, IBM Spectrum MPI, MVAPICH, Cray MPI

• By default, FUN3D will automatically determine how to assign MPI ranks to GPUs

• But many variations here; see the user manual for details or email fun3d-support@lists.nasa.gov

• FUN3D can utilize CUDA-enabled MPI; however, performance is very sensitive to the communication 

stack installed on the system – see the FUN3D user manual or contact fun3d-support@lists.nasa.gov

for help. Host-based MPI calls are generally more efficient.
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Node-Level Partitioning, MPI, and Threads

• For FUN3D, you can consider grid partitions and MPI ranks as synonymous 

• During vanilla CPU-based execution of FUN3D:

• In a flat MPI setting, one MPI rank is generally assigned to each CPU core (Case A)

• Multiple MPI ranks may be assigned to each CPU core if multithreading (Case B)

• In a hybrid MPI-OpenMP setting, a single MPI rank may be assigned to a NUMA domain (socket) 

and OpenMP threads may be spawned at the loop level to populate the cores (Cases C, D)
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Consider a dual-socket Xeon Skylake with 20 cores/socket:

MPI Rank OpenMP Thread

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

Case A
40 MPI Ranks

Socket 0 Socket 1

0,40 1,41 2,42 3,43

4,44 5,45 6,46 7,47

8,48 9,49 10,50 11,51

12,52 13,53 14,54 15,55

16,56 17,57 18,58 19,59

20,60 21,61 22,62 23,63

24,64 25,65 26,66 27,67

28,68 29,69 30,70 31,71

32,72 33,73 34,74 35,75

36,76 37,77 38,78 39,79

Case B
80 MPI Ranks

Socket 0 Socket 1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

Rank 0 Rank 1

Case C
2 MPI Ranks, 1 Thread/Core

Socket 0 Socket 1

Rank 0 Rank 1

0,20 1,21 2,22 3,23

4,24 5,25 6,26 7,27

8,28 9,29 10,30 11,31

12,32 13,33 14,34 15,35

16,36 17,37 18,38 19,39

Case D
2 MPI Ranks, 2 Threads/Core

Socket 0 Socket 1

0,20 1,21 2,22 3,23

4,24 5,25 6,26 7,27

8,28 9,29 10,30 11,31

12,32 13,33 14,34 15,35

16,36 17,37 18,38 19,39



Node-Level Partitioning, MPI, and GPUs

• When using GPUs to accelerate FUN3D, the simplest and most efficient strategy is to assign a single MPI 

rank to each GPU, with the ranks spread out evenly over the sockets

• Recall that no time-stepping kernels execute on the host when FUN3D is using GPU acceleration, so 

these CPU cores are solely used to launch CUDA kernels: they serve only to direct traffic

• Note that most CPU cores sit idle in this paradigm: if host-based kernels such as preprocessing and 

visualization support are major contributors to the workflow, this arrangement may yield poor 

performance for such kernels
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Consider a dual-socket Xeon Skylake with 20 cores/socket and a 4xV100 arrangement:

MPI Rank

0 1 2 3

GPU 0 GPU 1 GPU 2 GPU 3

Socket 0 Socket 1



Running with Multiple MPI Ranks per GPU

• If host-based kernels such as preprocessing and visualization support are critical to overall performance, we can 

instantiate more MPI ranks to distribute over the CPU cores

• In this case, launch the MPI job with an integer multiple of the number of GPUs present, and FUN3D will assign multiple 

MPI ranks to each GPU

• FUN3D will require the use of NVIDIA’s Multi-Process Service (MPS), which allows multiple CUDA kernels to be processed 

simultaneously on the same GPU

• Host-based kernels will now scale accordingly, while GPU performance should not degrade more than 5-10% when using 

up to 8 MPI ranks per GPU
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Consider a dual-socket Xeon Skylake with 20 cores/socket and a 4xV100 arrangement:

MPI Rank

GPU 0 GPU 1 GPU 2 GPU 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

Socket 0 Socket 1



NAS-Specific Guidance

• NAS provides 48 nodes of 4xV100 GPUs (and two 8xV100 nodes)

• For this session, we will use the following prebuilt v13.7 module:

module use --append /swbuild/fun3d/shared/fun3d_users/modulefiles

module load FUN3D_AVX512/13.7

• Here we assume use of entire nodes of 4 GPUs; see online NAS documentation for requesting partial nodes

• GPU jobs should be submitted to the v100 queue; it is accessed via the PBS server pbspl4 using one of the following 

methods:

• Use #PBS -q v100@pbspl4 in your PBS script

• Use –q v100@pbspl4 in your qsub command

• Log into pbspl4 and submit your job there

• Unlike most other GPU systems, your script must contain the line

unset CUDA_VISIBLE_DEVICES    # bash

unsetenv CUDA_VISIBLE_DEVICES # csh

• For current guidance on running FUN3D on NAS GPUs, enter the command:
module help /path/to/your/FUN3D/module

• For more details, see the online NAS documentation

13
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General Setup Guidance

• Build your copy of FUN3D with GPU support

• See Appendix A of User Manual; configure with:

--with-cuda=/path/to/CUDA         Path to your CUDA installation

--with-libfluda=/path/to/FLUDA    Path to your fluda_binaries/x86_64/single_precision in the v13.7 tarball

• Here we assume use of entire nodes of 4 GPUs

• See your system documentation for guidance on how to submit jobs to GPU-enabled resources

• Please contact fun3d-support@lists.nasa.gov for assistance; we are happy to help

14
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Supported FUN3D Options

• Always see the current FUN3D manual for a complete list

• All runs on tetrahedral grids must set mixed=.true. in the &code_run_control namelist

• All visualization options are available, but will execute on the CPU (boundaries, volume, slices, 

sampling, etc).  More details later in the session.

• All of the usual output files will be produced ([project].forces, [project].flow, [project]_hist.dat…)
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• Fluxes: Roe, LDFSS, Low-dissipation Roe

• Limiters: Barth, h-van Albada (both may be frozen if desired)

• Jacobians: van Leer, LDFSS

• Turbulence modeling: Legacy Spalart-Allmaras model with DES, DDES, and MDDES options; Dacles-Mariani, RC options

• QCR2000

• Boundary conditions: 3000, 4000 (optional adiabatic wall, specified surface velocities), 5000, 5050, 5051, 5052, 6662, 7011, 

7012, 7100, 7201

• Time integration: Backward Euler for steady flows, all unsteady BDF schemes, local time-stepping

• Time-averaging statistics

• Specified rigid grid motion

• Aeroelastic analysis using internal modal solver with modal mesh deformation

• Asynchronous native volume and surface pressure outputs
15



Demo Cases

• Three grids chosen from the 4th AIAA Drag Prediction workshop, 

based solely on grid size

• Original grids were tetrahedral; merged into mixed elements for this 

exercise

• Mach 0.85, Re=5M, AOA=1 deg; Spalart-Allmaras turbulence model

• Each case is run for 500 time steps

16
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Grid 1: “1M” Grid 2: “6M” Grid 3: “10M”

Points 1,233,948 5,937,410 10,252,669

Tetrahedra 983,281 7,815,201 14,836,294

Pyramids 22,866 71,789 89,642

Prisms 2,068,172 9,006,159 15,154,594



Running on a Single GPU

• Get the grid and fun3d.nml: wget https://fun3d.larc.nasa.gov/GPUShortCourse/1M.tgz

• Here, we are using a single CPU core as a shepherd for a single GPU; all other CPU cores sit idle

17
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&project

project_rootname = 'dpw-wb0_med-7Mc_5.merged'

/

&raw_grid

grid_format = 'aflr3'

data_format = 'stream'

/

&reference_physical_properties

angle_of_attack = 1.0

mach_number = 0.85

reynolds_number = 18129.1

temperature       = 560.0

temperature_units = 'Rankine'

/

&force_moment_integ_properties

area_reference = 594720.0

/

&nonlinear_solver_parameters

schedule_cfl = 10.0 200.0

schedule_cflturb =  1.0  30.0

/

&code_run_control

steps              = 500

restart_read = 'off'

/

&gpu_support

use_cuda = .true.

/

#PBS -S /bin/csh

#PBS -N run_test

#PBS -r n

#PBS -m ae

#PBS -M eric.j.nielsen@nasa.gov

#PBS -l select=1:ncpus=36:mpiprocs=36:model=sky_gpu:ngpus=4

#PBS -l walltime=0:10:00

#PBS -q v100@pbspl4

module use --append /swbuild/fun3d/shared/fun3d_users/modulefiles  # NASA ONLY

module purge                                                       # NASA ONLY

module load FUN3D_AVX512/13.7                                      # NASA ONLY

unsetenv CUDA_VISIBLE_DEVICES                                      # NASA ONLY

((mpiexec_mpt -np 1 nodet_mpi --time_timestep_loop ) > test.out) >& error.out

fun3d.nml

PBS Script



Running on a Single GPU

• Running with a single MPI rank

• MPS is not running (and is not needed; more later)

• Nominal time step costs 0.16 seconds

• As we converge, Jacobian evaluations are 

frequently skipped, reducing per-step costs to 

0.10 seconds

18
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FUN3D 13.6-0b87d96d13 Flow started 10/11/2020 at 11:52:40 with 1 processes

Contents of fun3d.nml file below------------------------

&project

project_rootname = 'dpw-wb0_med-7Mc_5.merged'

/

.

.

.

WARNING: CUDA MPS NOT running on r101i0n10.

CUDA MPS status is good: either not needed or running properly on all 1 nodes.

.

.

.

52  0.216158829571317E+00  0.46052E+02  0.40292E+04  0.41325E+04  0.57527E+04

0.142220594351411E+01  0.25588E+03  0.98227E+04  0.31565E+04  0.13871E+04

Lift  0.204387766282627E+00         Drag  0.171265575314454E-01

.16329447 seconds to complete timestep on the master rank.

53  0.221866818685588E+00  0.47732E+02  0.40292E+04  0.41325E+04  0.57527E+04

0.146033086295375E+01  0.25335E+03  0.98227E+04  0.31565E+04  0.13871E+04

Lift  0.205038956434613E+00         Drag  0.168285531266851E-01

.10379885 seconds to complete timestep on the master rank.

54  0.208703702628507E+00  0.49355E+02  0.72370E+04  0.51382E+04 -0.26047E+04

0.150686999090736E+01  0.25100E+03  0.98227E+04  0.31565E+04  0.13871E+04

Lift  0.205646859090078E+00         Drag  0.165874305015577E-01

.16937434 seconds to complete timestep on the master rank.

.

.

.

61.951 seconds to complete main timestep loop on the master rank.

Done.

Screen Output



Running on a Single Node with 4 GPUs
19
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• Get the grid and fun3d.nml: wget https://fun3d.larc.nasa.gov/GPUShortCourse/6M.tgz

• Here, we are using four CPU cores as shepherds for four GPUs; all other CPU cores sit idle

&project

project_rootname = 'dpw_wbt0_fine-35Mc_5.merged'

/

&raw_grid

grid_format = 'aflr3'

data_format = 'stream'

/

&reference_physical_properties

angle_of_attack = 1.0

mach_number = 0.85

reynolds_number = 18129.1

temperature       = 560.0

temperature_units = 'Rankine'

/

&force_moment_integ_properties

area_reference = 594720.0

/

&nonlinear_solver_parameters

schedule_cfl = 10.0 200.0

schedule_cflturb =  1.0  30.0

/

&code_run_control

steps              = 500

restart_read = 'off'

/

&gpu_support

use_cuda = .true.

/

#PBS -S /bin/csh

#PBS -N run_test

#PBS -r n

#PBS -m ae

#PBS -M eric.j.nielsen@nasa.gov

#PBS -l select=1:ncpus=36:mpiprocs=36:model=sky_gpu:ngpus=4

#PBS -l walltime=0:10:00

#PBS -q v100@pbspl4

module use --append /swbuild/fun3d/shared/fun3d_users/modulefiles # NASA ONLY

module purge # NASA ONLY

module load FUN3D_AVX512/13.7 # NASA ONLY

unsetenv CUDA_VISIBLE_DEVICES # NASA ONLY

((mpiexec_mpt -np 4 nodet_mpi --time_timestep_loop ) > test.out) >& error.out

fun3d.nml

PBS Script



• Running with four MPI ranks

• MPS is not running (and is not needed; more later)

• Nominal time step costs 0.22 seconds

• As we converge, Jacobian evaluations are 

frequently skipped, reducing per-step costs to 

0.14 seconds

20
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FUN3D 13.6-0b87d96d13 Flow started 10/11/2020 at 11:56:22 with 4 processes

Contents of fun3d.nml file below------------------------

&project

project_rootname = 'dpw_wbt0_fine-35Mc_5.merged'

/

.

.

.

WARNING: CUDA MPS NOT running on r101i0n10.

CUDA MPS status is good: either not needed or running properly on all 1 nodes.

.

.

.

62  0.951085003205109E-01  0.43358E+02  0.10865E+05  0.20825E+04  0.87569E+03

0.856370589209556E+00  0.33632E+03  0.10865E+05  0.20825E+04  0.87569E+03

Lift  0.182665507664676E+00         Drag  0.150035784519962E-01

.21863349 seconds to complete timestep on the master rank.

63  0.905743990845053E-01  0.41046E+02  0.10795E+05  0.41044E+04  0.34631E+04

0.852604223912869E+00  0.32636E+03  0.10865E+05  0.20825E+04  0.87569E+03

Lift  0.182568468979598E+00         Drag  0.151284763517011E-01

.14476674 seconds to complete timestep on the master rank.

64  0.851303952100990E-01  0.39652E+02  0.10795E+05  0.41044E+04  0.34631E+04

0.847837283747530E+00  0.31391E+03  0.10865E+05  0.20825E+04  0.87569E+03

Lift  0.182203611038651E+00         Drag  0.152642508523030E-01

.21870519 seconds to complete timestep on the master rank.

.

.

.

87.605 seconds to complete main timestep loop on the master rank.

Done.

Screen Output

Running on a Single Node with 4 GPUs



Running on Two Nodes with 4 GPUs Each
21

• Get the grid and fun3d.nml: wget https://fun3d.larc.nasa.gov/GPUShortCourse/10M.tgz

• Here, we are using four CPU cores as shepherds for four GPUs on each of two nodes; all other CPU cores 

sit idle
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&project

project_rootname = 'dpw_wbt0_fine-35Mc_5.merged'

/

&raw_grid

grid_format = 'aflr3'

data_format = 'stream'

/

&reference_physical_properties

angle_of_attack = 1.0

mach_number = 0.85

reynolds_number = 18129.1

temperature       = 560.0

temperature_units = 'Rankine'

/

&force_moment_integ_properties

area_reference = 594720.0

/

&nonlinear_solver_parameters

schedule_cfl = 10.0 200.0

schedule_cflturb =  1.0  30.0

/

&code_run_control

steps              = 500

restart_read = 'off'

/

&gpu_support

use_cuda = .true.

/

#PBS -S /bin/csh

#PBS -N run_test

#PBS -r n

#PBS -m ae

#PBS -M eric.j.nielsen@nasa.gov

#PBS -l select=2:ncpus=36:mpiprocs=4:model=sky_gpu:ngpus=4:mem=300g

#PBS -l place=scatter:excl

#PBS -l walltime=0:10:00

#PBS -q v100@pbspl4

module use --append /swbuild/fun3d/shared/fun3d_users/modulefiles # NASA ONLY

module purge # NASA ONLY

module load FUN3D_AVX512/13.7 # NASA ONLY

unsetenv CUDA_VISIBLE_DEVICES # NASA ONLY

((mpiexec_mpt -np 8 nodet_mpi --time_timestep_loop ) > test.out) >& error.out

fun3d.nml

PBS Script



• Running with eight MPI ranks

• MPS is not running (and is not needed; more later)

• Nominal time step costs 0.20 seconds

• As we converge, Jacobian evaluations are 

frequently skipped, reducing per-step costs to 

0.13 seconds

22
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FUN3D 13.6-237971ad24 Flow started 10/12/2020 at 07:56:12 with 8 processes

Contents of fun3d.nml file below------------------------

&project

project_rootname = 'dpw-wbt0_med-10Mn_5.merged'

/

.

.

.

WARNING: CUDA MPS NOT running on r101i0n10.

WARNING: CUDA MPS NOT running on r101i0n11.

CUDA MPS status is good: either not needed or running properly on all 2 nodes.

.

.

.

60  0.132018484698159E+00  0.14594E+03  0.16541E+05  0.00000E+00 -0.53707E+02

0.655829947965633E+00  0.51355E+03  0.16541E+05  0.00000E+00 -0.53707E+02

Lift  0.176613064418888E+00         Drag  0.153978023947141E-01

.20061884 seconds to complete timestep on the master rank.

61  0.120967899839322E+00  0.11989E+03  0.16541E+05  0.00000E+00 -0.53707E+02

0.633808927154000E+00  0.47335E+03  0.16541E+05  0.00000E+00 -0.53707E+02

Lift  0.178788035714884E+00         Drag  0.148029028171359E-01

.13077858 seconds to complete timestep on the master rank.

62  0.108924998160599E+00  0.88673E+02  0.16541E+05  0.00000E+00 -0.53707E+02

0.628431902834406E+00  0.45012E+03  0.16541E+05  0.00000E+00 -0.53707E+02

Lift  0.180312537215482E+00         Drag  0.143854284486610E-01

.19415972 seconds to complete timestep on the master rank.

.

.

.

79.732 seconds to complete main timestep loop on the master rank.

Done.

Screen Output

Running on Two Nodes with 4 GPUs Each



Running Multiple MPI Ranks per GPU
23

• Recall we have only used a very small number of MPI ranks per CPU so far

• This severely hampers the performance of CPU kernels such as preprocessing and visualization

• To mitigate these bottlenecks, we may run a larger number of MPI ranks, with multiple ranks sharing a GPU

• Choose an integer multiple of the number of GPUs available

• To facilitate efficient sharing of each GPU, use the NVIDIA Multi-Process Service (MPS)

• You may start this daemon yourself, or have FUN3D do it internally

• Here, we are using 32 CPU cores as shepherds for four GPUs

(8 MPI ranks each) on each of two nodes;

all other CPU cores sit idle

23

.

.

.

&gpu_support

use_cuda = .true.

cuda_start_mps = .true.

/

#PBS -S /bin/csh

#PBS -N run_test

#PBS -r n

#PBS -m ae

#PBS -M eric.j.nielsen@nasa.gov

#PBS -l select=2:ncpus=36:mpiprocs=32:model=sky_gpu:ngpus=4:mem=300g

#PBS -l place=scatter:excl

#PBS -l walltime=0:10:00

#PBS -q v100@pbspl4

module use --append /swbuild/fun3d/shared/fun3d_users/modulefiles # NASA ONLY

module purge # NASA ONLY

module load FUN3D_AVX512/13.7 # NASA ONLY

unsetenv CUDA_VISIBLE_DEVICES # NASA ONLY

((mpiexec_mpt -np 64 nodet_mpi --time_timestep_loop ) > test.out) >& error.out

fun3d.nml

PBS Script



• Running with 64 MPI ranks

• MPS is now running on all nodes

• Nominal time step costs 0.22 seconds

• As we converge, Jacobian evaluations are 

frequently skipped, reducing per-step costs to 

0.15 seconds

24
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FUN3D 13.6-237971ad24 Flow started 10/12/2020 at 08:09:30 with 64 processes

Contents of fun3d.nml file below------------------------

&project

project_rootname = 'dpw-wbt0_med-10Mn_5.merged'

/

.

.

.

CUDA MPS status is good: either not needed or running properly on all 2 nodes.

.

.

.

60  0.131023606510773E+00  0.14420E+03  0.16541E+05  0.00000E+00 -0.53707E+02

0.657988678847277E+00  0.52227E+03  0.16541E+05  0.00000E+00 -0.53707E+02

Lift  0.176608990442695E+00         Drag  0.154200246390409E-01

.22486705 seconds to complete timestep on the master rank.

61  0.120097956449676E+00  0.11736E+03  0.16541E+05  0.00000E+00 -0.53707E+02

0.636071451756599E+00  0.48195E+03  0.16541E+05  0.00000E+00 -0.53707E+02

Lift  0.178735835225606E+00         Drag  0.148265470180802E-01

.14993023 seconds to complete timestep on the master rank.

62  0.108185586213013E+00  0.85668E+02  0.16541E+05  0.00000E+00 -0.53707E+02

0.630569363594978E+00  0.45850E+03  0.16541E+05  0.00000E+00 -0.53707E+02

Lift  0.180267154538958E+00         Drag  0.144054614883000E-01

.21819975 seconds to complete timestep on the master rank.

.

.

.

88.757 seconds to complete main timestep loop on the master rank.

Done.

Screen Output

Running Multiple MPI Ranks per GPU



General Tips and Guidance
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• For many more tips and general troubleshooting advice, see the GPU chapter of the FUN3D user manual and/or contact

fun3d-support@lists.nasa.gov

• You may find that FUN3D does not function correctly at first on newly-installed GPU systems

• We have tried to anticipate a broad range of issues we have encountered before, but please be patient: there can be 

many details beyond a CPU-only system

• System administrators are sometimes unfamiliar with subtle details of GPU computing and may have set up the 

system in an unexpected configuration

• Please contact fun3d-support@lists.nasa.gov for assistance

• If we cannot help you identify/solve a problem, NVIDIA is offering tech support to the broader FUN3D community –

we can connect you with the appropriate NVIDIA POC

25
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Summit Performance for Unsteady 10-Species Reacting Turbulent Flow

~75x

~2 million 

SKL cores

What’s Coming?
Thermochemical Nonequilibrium, Algorithmic, and Other Capabilities

Temperature CO2 H2O

Hydrogen Jet in

Supersonic Crossflow

• New campaign runs 4-day sims on 

6 billion elements using 5532 V100s

• Throughput of ~2.2M Xeon cores

• DES with 10 species, 19 reactions

• 90 GB asynchronous I/O every 60 

secs; total of ~1 petabyte per sim
NASA Ames Vis Team


